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The paper presents a Matlab package for the linear time-(in)dependent Schrödinger
equation, based on the Hermite spectral method. The matrix form of the discretized
problem is suitable for the linear algebra capabilities of Matlab. The high accuracy and
efficiency of the algorithm is proved by many examples taken from the literature.
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1. Introduction

Consider the one-dimensional linear Schrödinger operator

H = − d2

dx2
+ V (x)

defined on the space L2 (IR), where the potential V is a real valued, measurable,
locally integrable function. Consequently, H is a self-adjoint operator whose
domain is an appropriate Sobolev space. Although the unphysical domain IR is
taken into consideration, the above operator is of practical interest in view of the
quantum mechanical interpretation that H governs the behavior of one electron
interacting with an external electrical field.

The evolution of a particle with initial state u0(x) ∈ L2 is described by the
time-dependent Schrödinger equation

iut (x, t) = Hu(x, t),

u(x, 0) = u0(x).

If we can solve the energy eigenvalue equation

Hψn = Enψn
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and if the initial state can be expanded as

u0(x) =
∞∑

n=0

anψn(x)

then, at a later time,

u(x, t) =
∞∑

n=0

ane−i Entψn(x).

A powerful method for calculating the eigenvalues and eigenfunctions of a
Schrödinger operator consists of converting the energy eigenvalue equation into
a matrix equation by means of collocation at appropriate grid points x0, x1, . . .,
or by means of the Galerkin method on a basis set of functions. The matrix
representation of the energy eigenvalue problem is

Ac = Ec,

where c is the column vector which consists of the values of ψ at the grid points
or of the coordinates of ψ with respect to the basis under consideration. It is
necessary to truncate the matrix A to some finite dimension, say N ×N , and then
its eigenvalues and eigenvectors can be calculated by the simple Matlab com-
mand eig for example.

High accuracy calculation of the eigenvalues and eigenfunctions of the
Schrödinger operator is an essential part of a good algorithm based on the above
ideas. The finite differences or finite element methods do not offer a sufficiently
great precision. The CPM method used by MATSLISE [1] is highly accurate but
works only for bounded intervals, so that either transformations of (−∞,∞) to
a bounded interval or artificial boundary conditions are needed. Other methods,
such like those of type SLEDGE [2] also perform such transformations and,
moreover, like MATSLISE, give the eigenvalues and eigenfunctions only one by
one. Spectral methods in unbounded domains are very promising in this field
and have received considerable atention, mainly due to their high accuracy and
being free from using artificial boundary conditions [3], but we must choose a
natural procedure to discretize the continuous problem.

For example, let us consider the spectral problem

x
du

dx
= λu, x ∈ IR. (1)

First, we use the package “A MATLAB Differentiation Matrix Suite” of
Weideman and Reddy [3] to discretize the problem by the well known pseudos-
pectral method based on Hermite collocation points. The command

[x, D] = herdi f (N , 1, b)
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gives the Hermite points x and the first order differentiation matrix D (of size N
and scaling parameter b). The differentiation process is exact for functions of the
form e−x2/2 p(x) where p(x) is any polynomial of degree N −1 or less, assuming
exact arithmetic. The spectral discretization consists of interpolating at N points
xi with the weight e−x2/2, differentiating the interpolant and multiplying by xi .

By setting

v(x) = e−x2/2u(x)

the problem (1) becomes

x
dv
dx

+ x2v = λv, x ∈ IR. (2)

The exact eigenfunctions of the discretized problem are vn(x) = e−x2/2xn, i =
1, ..., N sampled at the interpolation points and the corresponding eigenvalues
are λn = n, n = 0, 1, ..., N .

If V is the column vector (v(x1), ..., v(xn))
T , the discretized problem (2) is

[diag(x)D + diag(xˆ2)] V = λV .

The commands

[x, D] = herdi f (128, 1, 1);
L = eig(diag(x) ∗ D + diag(x .ˆ2));

plot (L ,′ .′)

give 128 numerical eigenvalues L , see figure 1. The first 16 small eigenvalues
approximate very well the exact corresponding eigenvalues of the discretized pro-
blem but the others are spurious due to the high sensitivity of the full matrix D
to rounding errors. Only for small dimension (N = 64 or 32) we obtain better
results.

Now we use the Hermite spectral method instead, based on the represen-
tation of functions in the transformed space, not in the physical space (i.e., cal-
culating the Hermite–Fourier coefficients of a function, not their values at the
Hermite points). We obtain the correct eigenfunctions un(x) = xn and the eigen-
values λn = n, n = 0, 1, ..., N − 1 of the discretized problem

[diag(x)D] V = λV,

even for N = 512. The commands of our package are

X = mult (512); D = deriv(512); L = sort (eig(X ∗ D)).
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Figure 1. Numerical eigenvalues by collocation at 128 points.

Consequently, we must calculate the numerical eigenvalues and eigenfunc-
tions of the Schrödinger problems using this Hermite spectral method, based on
the complete orthonormal sequence of Hermite–Weber functions (eigenfunctions
corresponding to the harmonic oscillator with the potential V (x) = x2)

φn(x) = Nne−x2/2 Hn(x), n = 0, 1, 2, . . . ,

where

Nn = 1√
2nn!√π ,

and Hn are the usual Hermite polynomials.
The energy eigenfunctions become

ψn(x) =
N−1∑

k=0

dnkφk(x),

and the initial condition u0(x) can also be expressed as

u0(x) =
N−1∑

k=0

ckφk(x) =
∞∑

n=0

anψn(x),

where

an =
N−1∑

k=0

ck

(
d−1

)

k n
.
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These coefficients can be used to obtain an approximation of the wave function
u(x, t) at any later time t .

Although the Hermite spectral methods have some attractive properties, the
direct spectral approach may not produce good approximations. In the practical
calculations, it is necessary to choose a scaling factor α since we can always use
φn(αx) as the basis set for any finite α [4, 5].

Some well-known properties of the spectrum of the Schrödinger operator
depending on the properties of the potential V (x) are:

(1) If V (x) → +∞ as |x | → ∞ then the spectrum of H consists of a dis-
crete sequence of eigenvalues tending to +∞.

(2) If V ∈ L1 (IR) then H has only point spectrum in IR−, with 0 as its
only possible acumulation point; in IR+ the spectrum is purely absolu-
tely continuous with an essential support IR+ itself.

(3) If xV (x) ∈ L1 (IR) then there are only finitely many bounded states.

2. Problem and implementation

Our MATLAB package HermiteEig calculates a finite number of nume-
rical eigenvalues and eigenfunctions of Schrödinger problems

−d2u

dx2
+ V (x)u = Eu, x ∈ (−∞,∞) .

Introducing the linear transformation ξ = αx for α > 0 the eigenvalue problem
becomes

−d2Ψ

dξ2
+ α−2V (α−1ξ)Ψ = E (α)Ψ, ξ ∈ (−∞,∞) , Ψ ∈ L2(−∞,∞), (3)

where the eigenvalues E (α) depending on the parameter α are connected with
the original eigenvalues E by E = α2E (α).

A powerful method to solve (3) is to expand Ψ into a series of the form

Ψ(ξ) =
∞∑

n=0

cnφn (ξ) .

Here

φn(ξ) = 1√
2nn!√π e−ξ2/2 Hn (ξ) , n = 0, 1, 2, ...
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are the normalized Hermite–Weber functions, i.e., the complete sequence of
eigenfunctions of the harmonic oscillator problem

−d2φn

dξ2
+ ξ2φn = (2n + 1) φn

and Hn (ξ) are the classical Hermite polynomials, see [6] and [7] for recent nume-
rical analysis of this method.

By setting

Ψ (ξ) = e−ξ2/2 y (ξ) ,

(3) becomes

−y′′ + 2ξ y′ + V (ξ) y = E (α) y,

where

V (ξ) = α−2V (α−1ξ)− ξ2 + 1

is the modified potential.
We search for an approximation of the new unknown function y of the

form

yN (ξ) =
N−1∑

n=0

cnψn (ξ),

where

ψn(ξ) = 1√
2nn!√π Hn (ξ) , n = 0, 1, 2, ...

are the normalized Hermite polynomials.
For the practical implementation, we define the vectors c and t by

cT = (c0, c1, c2, ...),

t T = (ψ0, ψ1, ψ2, ...),

so that y(ξ) = cT t (ξ) = t T (ξ) c.
Let us now find a matrix X for which

ξ · y(ξ) = ξ · cT t (ξ) = (Xc)T t (ξ) ,

i.e., the coefficients of ξ · y (ξ) are Xc. By using the properties of Hermite poly-
nomials we have

Hn+1 (ξ) = 2ξHn (ξ)− 2nHn−1 (ξ)
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so that we have for the functions ψn the three-term recursion

ξψn (ξ) =
√

n

2
ψn−1 (ξ)+

√
n + 1

2
ψn+1 (ξ),

which ψ−1 (ξ) = 0 and ψ0 (ξ) = π−1/4. Consequently,

ξ · ψ0 = ψ1√
2
,

ξ · ψ1 = ψ0 + √
2ψ2√

2
,

........

ξ · ψn =
√

nψn−1 + √
n + 1ψn+1√

2
, n � 2

and the non-zero elements of X are

Xi,i+1 = Xi+1,i =
√

i

2
, i = 1, 2, ...

Of course, in practical calculation we must truncate this infinite matrix to have
a finite order N , so that we obtain only an approximation of the exact result.

We also have

ξm y(ξ) = (Xmc)T t (ξ)

and

f (ξ)y(ξ) = ( f (X)c)T t (ξ)

for analytical functions f , i.e.,

f (ξ) =
∞∑

k=0

fk
ξ k

k! .

Moreover,

y(ξ)

ξm
= (

X−mc
)T

t (ξ)

if the l.h.s. has no singularity at the origin. Of course, Xm is a banded matrix for
small m but, generally, the matrix version funm(X)of the scalar function f (x)
or X−m = [inv(X)]m are no longer sparse matrices.

Similarly, let us find the differentiation matrix D giving

dy

dξ
= (Dc)T t (ξ) .
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The derivatives of Hn satisfy H ′
n = 2nHn−1 so that ψ ′

n = √
2nψn−1 and the non-

zero elements of D are

Di,i+1 = √
2i, i = 1, 2, ...

We truncate this matrix to the order N but this time, if y is described by N coef-
ficients cn, the above differentiation is exact. More, we have

d2 y

dξ2
= (D2c)T t (ξ) .

Applying these formulae to equation (3), we get

[
−D2 + 2X D − X2 + V (X)+ IN

]
c = Ec.

If we define the matrix

A = −D2 + 2X D − X2 + V (X)+ IN ,

the vector c satisfies the eigenvalues/eigenvectors problem

Ac = Ec. (4)

Remark . We could obtain similar matrices for the basis φn. The matrix X is the
same while the differentiation matrix D must be replaced by D−X (ψn = eξ

2/2φn

and ψ ′
n = √

2nψn−1 becomes ξeξ
2/2φn + eξ

2/2φ′
n = √

2neξ
2/2φn−1 from where

φ′
n = √

2nφn−1 − ξφn). The equation (3) becomes
[
−D2 + DX + X D − X2 + V (X)

]
c = Ec

and actually we have DX + X D = 2X D + IN where IN is a slightly modified
unit matrix IN .

The package HermiteEig contains the function files pd.m, x2t.m,
mult.m, deriv.m, and sph.m.

(a) The function pd.m (physical domain),

[x,w] = pd(n);
calculates the nodes and weights for the GaussHermite quadrature, i.e.,

I ≡
∫ ∞

−∞
e−x2

f (x)dx ≈
n∑

k=1

f (xk)wk = w*f,

where f contains the values of the function f at the grid points x .
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(b) The function x2t.m

t = x2t(n,x)

calculates the values of the normalized Hermite polynomials ψk ,
k=0,1,...,n at the points x . Consequently, if

f (x) = c0ψ0(x)+ c1ψ1(x)+ · · · + cnψn(x)

and cT = (c0, ..., cn), we have f (x) = t T ∗ c, for any x ∈ (−∞,∞).

(c) The functions X=mult(n) and D=deriv(n) calculate the matrices X ,
respectively, D.

(d) The main function [L,psi,x,w,t]=sph(fun,n,a) gives the eigen-
values L, the eigenfunctions psi , the nodes x , the weights w, and the
matrix t . The input parameters are the potential V (x) in the function
f un, the dimension of the discretized problem n and the scaling factor a.
Of course, only the first eigenvalues are highly accurate while the last
ones are spurious.
The folder examples contains 21 test problems from the literature [1, 2,
6–9].

3. Examples

We give here more details of some interesting examples.

3.1. Morse problem

Let us consider the potential

V (x) = (e−γ x − 1)2, γ = 0.005π

with N = 100 and the scaling parameter α = 0.1. Many of the calculated eigen-
values λn (file morse.m) coincide with the exact eigenvalues

En =
(

n + 1
2

)
γ

[
2 −

(
n + 1

2

)
γ

]
, n = 0, 1, . . . ,

[
1
γ

− 1
2

]
,

n λn En
0 0.01564627824044 0.01564627824044,
5 0.16532370761911 0.16532370761911,
10 0.30266413149642 0.30266413149643,
25 0.64066337012045 0.64066337012019.
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3.2. Symmetric double well potential

For the potential

V (x) = υ4

(
x2 − 1

2
υ−1

4

)2

with υ4 = 0.01, α = 1.1, and N = 100, some of the calculated eigenvalues (file
sdwp.m) are, in ascending order,

1.40404860529767 9.49857838718786,
1.40404860529776 9.49857838719109,
4.17019360599931 12.04930948633407,
4.17019360599934 12.04930948667311,
6.87008883371401 14.51420502298122,
6.87008883371409 14.51420504812104

in very good coincidence with those from [6].

3.3. Anharmonic potential

For the potential

V (x) = x2 + λx2

1 + gx2
, λ = 0.1, g = 0.1,

the numerical computation (anharmonic) gives, with N = 100 and a = 1
the first eigenvalue L(1)=1.04317371304445, which coincides with the value
found by matslise [1].

3.4. Bender–Orszag potential

For the potential

V (x) = −m(m + 1)

cosh2(x)

the exact eigenvalues are Ek = − (m − k)2, 0 � k < m. The calculated values for
m = 3, a = 1, and N = 100 are

−8.99999999998992,
−4.00000000003926,
−0.99999999993041.
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3.5. Non-analytical potential

Let us consider the potential [2]

V (x) =
{

1 − e−x2
, x < 0,

x log(x + 1), x > 0

with the unique eigenvalue λ0 = 0.7125276014.
In this case, the formula V (ξ)y(ξ) = (V (X)c)T t (ξ) does not work. We must

use the transformation matrix

F = [t ∗ diag(w)] ∗
[
diag (V (ξ)) ∗ t T

]

instead of V (X).
The commands [L,psi,x,w,t]=tab(250,1.35); (i.e., N = 250, a =

1.35) give the numerical eigenvalues

0.71252779084313,

.....

and the first of them approximates the true eigenvalue with an error less than
2 × 10−7.

3.6. Evolution problem

In [5] an instability was observed numerically when a kind of Hermite
spectral method was applied for the linear diffusion equation in a unbounded
domain. Precisely, let us consider the problem

ut − uxx = f (x, t), x ∈ IR, t > 0,

u(x, 0) = u0(x), x ∈ IR,

which

f (x, t) =
[
5(1 + x) cos 5(x + t)+

(
25 + 0.5 − 0.25x2

)
sin 5(x + t)

]
e− x2

4 ,

and

u0(x) = sin 5x e− x2
4 .

The exact solution of the problem is U (x, t) = sin 5(x + t) e− x2
4 .
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With the transformation u(x, t) = y(x, t)e− x2
2 the above problem becomes

yt = yxx − 2xyx + (x2 − 1)y + f (x, t)e
x2
2 , x ∈ IR, t > 0,

y(x, 0) = u0(x)e
x2
2 , x ∈ IR.

If we expand

y(x, t) =
N∑

k=0

ck(t)ψk(x)

we obtain for the coefficients c the differential system

c′ = Dc + F,

c(0) = c0,

where F and c0 are the coefficients of the expansions of f (x, t)e
x2
2 and u0(x)e

x2
2

with respect to ψ and D is the matrix D2 − 2X D + X2 − IN .
Now, by using the Crank–Nicolson method, we obtain for c j = c(t j ) the

equations

c j+1 − c j

dt
= D c j+1 + c j

2
+ F j+1 + F j

2
,

i.e,
(

I − dt
D
2

)
c j+1 = c j + dt

2

(
Dc j + F j+1 + F j

)
.

Using N = 64 and dt = 0.01 (diffusion.m) , we obtain after 100 time steps
the coefficients c of the numerical solution at t = 1 and the corresponding
values

(
t T c

)
e−x2/2, with a maximal error 4 × 10−5 at the grid points x , without

any numerical instability.

3.7. Fokker–Planck equation

We solve the Fokker–Planck equation [8],

∂ f (x, t)

∂t
= ∂2 (B(x) f (x, t))

∂x2
+ ∂ (A(x) f (x, t))

∂x

via eigenfunction expansion. It is more convenient to work with a self-adjoint
operator. Let us consider the equilibrium solution

f0(x) = 1
B(x)

exp
(

−
∫ x A(y)

B(y)
dy

)
.
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If Φ(x, t) is defined by f (x, t) = f0(x)Φ(x, t), we obtain the equation for Φ

∂Φ(x, t)

∂t
= B(x)

∂2Φ(x, t)

∂x2
− A(x)

∂Φ(x, t)

∂x
= −LΦ(x, t).

The operator L satisfies the eigenvalue equation LΦn(x) = εnΦn(x) and it
is a self-adjoint operator on the space spanned by the eigenfunctions Φn, with
the inner product with the weight function f0(x). The function Φ(x, t) can be
expanded by the complete set of eigenfunctions according to

Φ(x, t) =
∑

n

bne−εntΦn(x),

where the expansion coefficients bn are determined by the initial condition
f (x, 0).

Computationally it is more convenient to solve the above eigenvalue pro-
blem using the Schrödinger equation

−d2Ψn(z)

dz2
+ V (z)Ψn(z) = εnΨn(z),

where

Ψn(z) = ( f0(x(z))
√

B(x(z)))1/2Φn(x(z)),

z(x) =
∫ x

(B(y))−1/2 dy.

The effective potential is given by

V (z) = 1
4

[
W 2(z)− 2W ′

z(z)
]
,

where

W (z) = 1√
B

(
A + B′

2

)
,

B ′ = dB(x(z))
dz .

Let us consider, for example, the case of the bistable system

∂ f (x, t)

∂t
= ε

∂2 f (x, t)

∂x2
− ∂

((
γ x − gx3

)
f (x, t)

)

∂x

with γ = g = 1. The corresponding effective potential is

V (z) =
(
z3 − z

)2

4ε2
− 1

2ε

(
3z2 − 1

)
.
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For ε = 0.0125, the package (evol.m with N = 101, ε = 0.0125, the sca-
ling factor a = 7, the time step dt = 0.1 and as the initial distribution f (x, 0) –
a Gauss function) gives the eigenvalues

L(1:10)*49*0.0125,

−0.00000000000000 1.83463714345201,
0.00000000090974 2.56075256468075,
0.95897283387818 3.00731102631005,
1.81602047864552 3.16316264504337,
1.82507262410861 3.42456872119340

and the time evolution in good concordance with those from [9].

4. Conclusion

The package HermiteEig is useful for steady or evolution Schrödinger
equations (and not only). It gives the important eigenvalues and eigenfunctions
very fast and accurately. The Matlab code could be freely obtained from [10].
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